Northeastern University
DS2001 — Programming with Data — Social Science Practicum
Fall 2019, Mattsson & McCabe

Practicum 9: Search

In this week’s practicum we will be processing data from the web. When we send our search queries to
the online server, it will return a dictionary of information.

1 Weather in Boston

Accessible weather predictions are an essential part of modern life. As it turns out, they are also an
excellent example of working with nested data structures and classes. The online weather service we will
be using is OpenWeather. It is available here: https://openweathermap.org/.

1.1 Download

Please download pr09.zip from the practicum website (or Blackboard), unzip it, and move the direc-
tory /folder to where you want it in your file system. Use Atom’s File > "Add Project Folder..." to
open this folder and view weather.py and weather. json.

1.2 JSON data

Dictionaries are more flexible that lists, so they can do more than embed the header in a simple table
of data. Data can be stored on disk as a dictionary using the JSON format. Please familiarize yourself
with this data format by poking around in weather. json. Note that it uses most of the types we have
encountered in previous weeks, and their representations in the file are quite similar to the appropriate
syntax in Python. So

"coord":{
"lon":-71.06,
"lat":42.36

},

encodes a dictionary with two (string) keys, lat and lon, and their (float) values. Similarly, the presence
of square brackets indicates a list.

1.3 The json module

You can load a dictionary from JSON file like this:

import json
content = open('filename.json', encoding='utf-8').read()
data = json.loads(content)

Please load the data from weather. json and confirm that you can navigate this data as a dictionary.
Find:

e the name of the city


https://openweathermap.org/
https://en.wikipedia.org/wiki/JSON

DS2001, Fall 2019, Mattsson & McCabe — Practicum 9: Search 2

e the timestamp of the weather report
e the temperature

e the description of the weather

1.4 Human-readable weather

You'll notice that a few of these pieces of data are not what we would call “human readable”. The time
of the weather report is a UNIX integer timestamp and the temperature is in Kelvins. Please create two
helper-functions and one print function that make the weather report human-readable.

convert_time 'This function should take a UNIX integer timestamp and return a human-readable string
with the time. You can use the time module, like so:

import time
time_string = time.ctime(time_unix)

convert_temp This function should take a temperature in Kelvins and return a temperature in Fahren-
heit. Hint: Wikipedia has the conversion formula.

print_weather This function should take a weather dictionary as its argument and print the weather in
an understandable format. Your function should print (again) the name of the city, and the timestamp,
temperature, and description of the weather.

HINT: Look at the weather key in weather.json. It’s a list (of dictionaries)! Although in the input
we're currently considering this list has only one element, let’s make this function safe (and useful) for
when there’s multiple weather conditions (e.g, mist and rain) by using a list comprehension and join.

2 Weather data object

We know that we will always receive weather forecasts in this exact same dictionary format. We know
that it will always be useful to use the helper functions we’ve written for this dictionary. And we know
it will always be useful to print the contents of this dictionary using the specific function we’ve written.

Objects in Python let us assign functions to a particular data structure. You have already used several
of these! For example, append and pop are a methods assigned to the list object. It would be useful to
us to create a data object for a weather report.

2.1 Initialize a weather object

In your starter file (weather.py) you should see a statement that defines an object called WeatherReport.
Object definition statements must include an __init__ method that initializes an instance of that object.
Methods assigned to an object always take self as an argument, and in this case we also want the
initializing method to take a weather dictionary. Use the following syntax to fill in the __init__ method:

def __init__(self, weather_dictionary):
self.id = weather_dictionary["id"]
self .name = weather_dictionary["name"]


https://en.wikipedia.org/wiki/Fahrenheit

DS2001, Fall 2019, Mattsson & McCabe — Practicum 9: Search 3

Confirm that your object definition is working using the following syntax:

my_object_instance = MyObject(my_dictionary):
print (my_object_instance.property)

Our WeatherReport class is going to contain some, but not all, of the information contained in the JSON

2.2 Implement utility methods: get_description

Let’s implement a method for our class to interact with various attributes.

The descriptions of the weather events are stored in the weather attribute, but this is a list of dictionaries
that is somewhat awkward to work with. Our get_description() method will make these easier to access
by returning a string containing all the descriptions lodges in this list of dictionaries.

2.3 Printing with methods: summarize()

Similar to our print_weather function from earlier, we can write a method that prints a nicely formatted
string that we can print out. So, where we wrote

print_weather (our_weather_dict)
we can now write

our_weather_report.summarize ()

2.4 Using the __str__ method to print

What happens if we forget the method call and simply try to print (our_weather _report)? We will see
something odd like

<__main__.WeatherReport object at 0x7fcfbc34b668>

What is this, and where did it come from? When Python tries to print an object, it attempts to get a
string representation of that object by calling its __str__ method; the default one simply prints out the
module the object is located in, the name of the object, and its address in memory. This isn’t very useful
to us! Since we already have a function that creates a nice string representation of our WeatherReport,
let’s override the __str__ method for our class so that we can just print it and see something useful. For
this, we can copy a lot of the code we wrote in summarize, except here we want to build up a string to
return instead of printing.

3 Extra stuff!

3.1 APIs!

Various online services provide access to their data using the interfaces called APIs. The file you worked
with in the previous sections was a saved version of a query to the OpenWeather API.

3.2 Get an API key from OpenWeather

Go to https://home.openweathermap.org/users/sign_up and request a free account. After you have
registered go to https://openweathermap.org/price and press Get API key and Start. You should
get an email with an APIT key.


https://home.openweathermap.org/users/sign_up
https://openweathermap.org/price

DS2001, Fall 2019, Mattsson & McCabe — Practicum 9: Search 4

3.3 Query the OpenWeather API

Your API key should work after a few minutes. Try by opening this link in your browser (remember to
replace YOUR_APP_ID with the API key you got in your email):

https://api.openweathermap.org/data/2.5/weather?q=Boston&appid=YOUR_APP_ID
If there is a long delay in getting your API key working, you can try with mine (in your starter file).

3.4 Query the OpenWeather API using the requests module

You can also query APIs from within Python, and save the response as a variable. Use the following
syntax:

import requests

url = 'https://api.openweathermap.org/data/2.5/weather?q=Boston&appid=YOUR_APP_ID'
content = requests.get(url).text

data = json.loads(content)

Play around with the different queries you can make to find the weather report for different cities and
different times.

This handout was originally created by Carolina Mattsson and Stefan McCabe, Fall 2019. This exercise
was originally created by Piotr Sapiezynski, Spring 2019.


https://api.openweathermap.org/data/2.5/weather?q=Boston&appid=YOUR_APP_ID

	Weather in Boston
	Download
	JSON data
	The json module
	Human-readable weather

	Weather data object
	Initialize a weather object
	Implement utility methods: get_description
	Printing with methods: summarize()
	Using the __str__ method to print

	Extra stuff!
	APIs!
	Get an API key from OpenWeather
	Query the OpenWeather API
	Query the OpenWeather API using the requests module


