
Northeastern University
DS2001 – Programming with Data — Social Science Practicum
Fall 2019, Mattsson & McCabe

Practicum 5: Ranking

In this week’s practicum we will be asking Python to process a larger amount of data than we have in the
past. We will use functions to make this more tractable, and, using baseball data as an example, explore
ways of ranking data to isolate interesting individuals.

1 Baseball

Baseball has been of interest to data scientists and statisticians, and vice versa, for some time. The
quality of data in baseball is generally quite high; we have play-by-play data for virtually every game
since the 1930s and summary box scores going back to the 1890s. The sport also lends itself to statistical
analysis better than other sports, because it is easier to divide into discrete events and quantify than
basketball or even football. Statistical analysis of baseball—sabermetrics—has been around since the
1980s or so but really took off in the 2000s with the success of the low-budget Oakland A’s and the
popularization of their story through the book Moneyball. We’ll use some of that data today, studying
batting performances since 1969 using data collected in the well-known Lahman database.

1.1 Download

Please download pr05.zip from the practicum website (or Blackboard), unzip it, and move the direc-
tory/folder to where you want it in your file system. Use Atom’s File > "Add Project Folder..." to
open this folder and view baseball.py.

2 Viewing and filtering data

2.1 Viewing snippets of the data

This dataset is considerably larger than the previous datasets we have worked with. Printing it all out
will produce a ton of output that we don’t want to scroll through. While looking at the whole data at
times can be useful, we want to write a function to print the header plus the first few rows of the dataset.

2.2 Filtering numeric columns

This dataset consists of a number of numeric columns, from year to games played to counts of various
outcomes. We are often interested in specific subsets of these data: for example, all player-seasons from
the 1990s, or all players with at least 200 hits, and so on.
Using patterns you’ve learned in previous weeks, like combining for and if with list appends, write a
function that takes the data, a column index, and a minimum and maximum value, and returns a subset
of the data (in the same form - i.e., a list of lists with the same number of columns) matching these
criteria.

http://www.seanlahman.com/baseball-archive/statistics/


DS2001, Fall 2019, Mattsson & McCabe – Practicum 5: Ranking 2

Evaluating this filtering function. We can test this filtering function using some commonsense
assumptions and by referring to baseball records. Some tests:

• almost all of these variables are counts; that is, they should be either zero or positive. So if the
minimum value is zero, and the maximum number is something unreasonably large—say, 10,000—
then the function should just return the whole dataset.

• Ichiro Suzuki set the single-season hits record in 2004, with 262 hits.

• In the same year, 2004, Barry Bonds set the major league record for walks (232)

• Rickey Henderson stole 130 bases in 1982.

2.3 Filtering categorical columns

We have a few string-valued columns that we may want to filter on as well. Write a function that takes
our data and a list of strings, then uses in to filter

Evaluating this filtering function. When filtering by team, you may want to use our head function
to avoid writing too many rows to the screen.

• The Montreal Expos (MON) folded in 2004 and were replaced by the Washington Nationals (WAS).

• While in the historical data there are other leagues, in the post-1969 expansion era, there are only
two leagues, the AL and the NL, so every row should have a league of AL or NL.

2.4 Finding specific cases: Franchise records

Both of these filtering functions take a dataset (in list of lists form) and return a dataset (in list of lists
form). This means that the output of one filtering function can be the input of another one; i.e., we can
chain filter calls to analyze specific subsets of the data. To that end, find and record the names of the
players who hold the following single-season team records:

• the Atlanta Braves (ATL) single-season strikeout leader (look for > 160 SO)

• the Boston Red Sox (BOS) single-season home runs leader (look for > 50 HR)

3 Ordering data

We have used single-season records to validate our filtering functions. Now, let’s move on to finding
baseball records when we don’t already know them. We will use Python’s built-in sorted function to
order our data, and combine this with our own head function to print the top single-season records for
various baseball stats.

3.1 Using helper functions

Python’s sorted function will sort any list you give it, returning the sorted list. This function behaves
like you would expect it to for simple lists. But we want to use sorted to sort a list where each element
is itself a list of baseball statistics for one player in one year. The built-in function has no way of knowing
what we mean by ”sort” in this case, unless we tell it. For this, the sorted function takes an optional
parameter key, which should be a function indicating what to use to do the sort.
Since we wish to sort our dataset by a specific value (say, year, or home runs), we need to define helper
functions that extract that value from each row (i.e., a player-season). If we wanted to sort by first names,
we would need to write a function that extracts the first name from one row. That would look like:



DS2001, Fall 2019, Mattsson & McCabe – Practicum 5: Ranking 3

def get_first_name(row):

return row[0]

sorted(our_list_of_lists, key=get_first_name)

Go ahead and write the helper functions that you know you’ll need.

3.2 Single-season leaderboards

Combining the sorted function with out head function, we can now create leaderboards for specific
stats. Write a leaderboard function that takes four parameters: the header, an input dataset, a Helper
function, and the number of rows to print along with the header.

Evaluating the leaderboard function. Without domain knowledge, it’s a little trickier to validate
these outputs. But we can try some commonsense tests. For example, getting the leaderboard of first
names should return a bunch of Zacks (because Z is the “largest” letter):

leaderboard(baseball_header, baseball_data, get_first_name, 5) # -> 2 Zoilos and 3 Zacks

Does this work? Probably not! By default, the sorted function places the smallest values first and we
want the largest. Thankfully, sorted can accept another optional parameter reverse, which is a boolean
value that is False by default. Try this instead:

sorted(our_list_of_lists, key=get_first_name, reverse=True)

3.3 Using leaderboards to find records

Using our leaderboard function, we can find the same records as before, plus others. So use the function
to replicate and extend your earlier analysis and answer the following questions:

1. We saw before that 2004 Ichiro Suzuki set the record for hits in a season. He also holds second
place (2001). Who is next?

2. How many times is Barry Bonds in the top 10 in walks in a season?

(Optional) Using anonymous functions Writing out these helper functions each time can be pretty
tedious. An alternate strategy is to use anonymous functions with the lambda keyword. This keyword
returns a function in its place (without a name, thus “anonymous function”); for example

lambda x: x + 1

is equivalent to writing

def <something>(x):

return x + 1

In general, it’s better to define functions normally (i.e., with names) so that you can call them later in
your code. However, in some cases, like with sorted, we want to create a function that will only be used
in that spot. So, if we wanted to sort a list of lists by the 0th index, we could write

sorted(our_list_of_lists, key=lambda x: x[0])

This is saying take our list of lists, and for each element (a list), look inside at the 0th element
to determine where it should go in the sort; i.e., it’s the same thing we did with the get first name

function.



DS2001, Fall 2019, Mattsson & McCabe – Practicum 5: Ranking 4

4 (extra) An application: “Three True Outcomes” in baseball

4.1 Combining columns

There are three outcomes of a plate appearance that don’t involve the defense at all, only the pitcher and
the batter: a walk, a home run, or a strikeout.1 Three-true-outcome players tend to be patient sluggers
who combine a low batting average with lots of home runs and walks. This style of play is sometimes
considered boring; after all, it’s an outcome where there’s no opportunity to see an exciting defensive play.
It’s supposedly become more common in recent years, to the despair of baseball announcers everywhere.
Let’s create a true outcome column in the dataset summing a player’s walks, home runs, and strikeouts
in a season and use it to explore the TTT trend.

4.2 Aggregating data and getting an answer

We’re interested now, not in player-seasons, but in trends across seasons. So here we want to aggregate
things up to the season level. For each year, we want to add up all the plate appearance and “true
outcomes” across-player seasons, then calculate the ratio

TT% =
num. TT

num. PA

for each year. Has it increased over time? How much?

5 Codebook

Index Header Detail

0 first name
1 last name
2 year Season
3 stint The nth team someone played for this season
4 team Team name (short ID)
5 league League (AL/NL)
6 AB Times at bat
7 H Hits
8 HR Home runs
9 SB Stolen bases
10 BB Walks
11 SO Strikeouts
12 HBP Times hit by pitch
13 PA Plate appearances

This handout was originally created by Carolina Mattsson and Stefan McCabe, Fall 2019.

1Being hit by a pitch should also be “true outcome” by this definition, but no one seems to care about that, so let’s
ignore it.


	Baseball
	Download

	Viewing and filtering data
	Viewing snippets of the data
	Filtering numeric columns
	Filtering categorical columns
	Finding specific cases: Franchise records

	Ordering data
	Using helper functions
	Single-season leaderboards
	Using leaderboards to find records

	(extra) An application: ``Three True Outcomes'' in baseball
	Combining columns
	Aggregating data and getting an answer

	Codebook

